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ABSTRACT 

In this report, we compare the performance of two tracking technologies, the 

Kalman filter and a factored sampling procedure known as the Condensation Algorithm, 

to track a missile in a dense countermeasures engagement.    During a missile 

engagement, countermeasures may produce features that are identical to those of the 

target.  Consequently, correct identification of the target missile from decoys can result in 

confusion, delays, and lost track.  Therefore, the two algorithms were compared on the 

following bases: (1) the accuracy of identification, (2) the time required to identify the 

target correctly, and (3) sensitivity with respect to missile and decoy masses and process 

noise. 
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1. INTRODUCTION 

In many target tracking applications, one is confronted with the problem of 

distinguishing the true target from decoys.  The purpose of this work was to compare the 

performance of two tracking technologies, the Kalman filter and a factored sampling 

procedure known as the Condensation Algorithm, to track a missile in a dense 

countermeasures engagement.   The two algorithms were compared on several bases such 

as: (1) the accuracy of identification, (2) the time required to identify the target correctly, 

and (3) sensitivity with respect to missile and decoy masses and process noise. 

During a missile engagement, "clutter" is introduced with deployment of 

countermeasures that can mimic the missile.  The deployment of decoys can cause the a 

posteriori target state probability density to be multi-modal.  Traditional tracking 

techniques (variations of the Kalman filter [Cardillo, Mrstik, and Plambeck, 1999]) are 

based on Gaussian densities and can not represent simultaneous alternative hypotheses.  

On the other hand, the Condensation Algorithm [Isard and Blake, 1996] can deal with the 

multi-modal case by estimating the a posteriori state probability density using factored 

sampling. 

The simulations constructed in this work include both missile warhead and 

decoys.  Both are observed by a simulated radar device, which cannot distinguish 

between the two.  The only way the decoys can be distinguished from the missile is upon 

re-entry, at which point the less massive decoys experience greater deceleration than the 

missile.  The basic idea of this work is to compare how well the two tracking algorithms 

can distinguish between the decoys and the missile by using the difference in 

deceleration.  Section 2 through 4 describe the general theory of motion and measurement 
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models, the Kalman filter tracker, and the Condensation Algorithm tracker; Section 5 

describes the specific motion and measurement models used in this work; Section 6 

contains the results, which are summarized in Section 7.  The appendix contains an 

overview of the software implementation. 
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2. MOTION & MEASUREMENT MODELS 

The two tracking algorithms described below make the same assumptions about 

the motion of a single target and about target measurements.  A target has a state )(tX  at 

time t : )(tX  is a vector-valued random variable whose components may include directly 

observable quantities and other quantities which, although not directly observable, 

influence future states.  For a deterministic system )( ttX ∆+  is given by a function 

of )(tX , but in tracking applications this is assumed to be modified by process noise. The 

motion model specifies the ideal motion and the process noise.  Similarly, an observation 

)(tZ  at time t  (if an observation is made at that time) is assumed to have an ideal value, 

which is modified by measurement noise: the distribution of )(tZ  given )(tX  is 

specified by the measurement model.  Observations are made at times KK ,,,, 21 kttt , and 

the algorithms estimate the states ),( 11 tXx =  …, ),( kk tXx = … from the observations 

),( 11 tZz = …, ),( kk tZz = … 

The motion model consists of a function f and positive definite matrices 1Q , 2Q , 

…, 1−kQ , …. The assumption is that 

),,,( 11 kkkkk ttwxfx −−=  

where the process noise kw  is a Gaussian random vector with mean 0 and covariance 

matrix 1−kQ . 

The measurement model consists of a function h  and positive definite 

matrices 1R , 2R , …, kR , ….  The assumption is that 

),,( kkkk tvxhz =  
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where the measurement noise kv  is a Gaussian random vector with mean 0 and 

covariance matrix kR .  It is also assumed that all the noise vectors are statistically 

independent of each other and of the initial state. 
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3. KALMAN FILTER ALGORITHM 

The Kalman filter algorithm is essentially a set of recursive equations that 

implement a predictor-corrector estimator.   The Kalman filter estimates a process at 

some time and then obtains feedbacks from a noisy measurement. Therefore, there are 

two groups of Kalman filter equations: time update equations (predictor) and 

measurement update (corrector) equations.  The time update equations project forward 

the current state and error covariance estimates to obtain an a priori estimate for the next 

time step. The measurement update equations incorporate a new measurement into the a 

priori estimates to obtain an improved a posteriori estimate.  The time and measurement 

update equations are presented in Tables 1 and 2 respectively. 

 

Table 1:  Kalman filter time update equations. 

),,0,ˆ(ˆ 11 kkkk ttxfx −−
− =      (1) 

T
kkk

T
kkkk WQWApAp 11 −−

− +=    (2) 

 

Table 2:  Kalman filter measurement update equations. 

1)( −−− += T
kkk

T
kkk

T
kkk VRVHpHHpK   (3) 

)),0,ˆ((ˆˆ txhzKxx kkkkk
−− −+=    (4) 

−−= kkkk pHKIp )(     (5) 

In the equations above 

• kx , kz , kt , f , h , 1−kQ , and kR  are as described in Section 2. 

• −
kx̂  and kx̂ are a priori and a posteriori estimates of the state kx . 
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• kp  and −
kp  are the covariance estimates associated with −

kx̂  and kx̂  

• kA  is the Jacobian matrix of partial derivatives of f with respect to x , that is 

( )[ ]
[ ]

[ ]
),0,ˆ( 1, tx

x
f

A k
j

i
jik −∂

∂
= . 

• W is the Jacobian matrix of partial derivatives of f with respect to w  

( )[ ]
[ ]

[ ] 0

11, ),,,ˆ(
=

−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=
w

kkk
j

i
jik ttwx

w
f

W . 

• H  is the Jacobian matrix of partial derivatives of h with respect to x  

( )[ ]
[ ]

[ ]
),0,ˆ( 1, kk

j

i
jik tx

x
h

H −∂
∂

= . 

• kK  (computed by (3)) is the gain matrix. 

• I  is the identity matrix (of appropriate dimension). 

• V  is the Jacobian matrix of partial derivatives of h with respect to v  

( )[ ]
[ ]

[ ] 0

, ),,ˆ(
=⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=
v

kk
j

i
jik tvx

v
h

V . 

There is some difficulty initializing the Kalman filter because one has no a priori 

information.  The most rigorous approach is to initialize the filter with the first 

measurement, but this is inconvenient because the variance may be infinite in some 

directions (for example, if a measurement corresponds to position then the velocity 

variance after the first measurement is infinite).    A more common approach is to 

initialize the filter with a zero state vector and large covariance.  
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4. CONDENSATION ALGORITHM 

The condensation algorithm, like the Kalman filter, is concerned with target state 

distributions at various times, conditioned on observations.  Unlike the Kalman filter, the 

condensation algorithm is non-parametric: instead of estimating mean, variance, or other 

parameters, the condensation algorithm gives a sample of the distribution by using a 

Bayesian technique called factored sampling.  This difference allows the condensation 

algorithm to handle "arbitrary" process and measurement models as long as the 

conditional independence assumptions hold.  The condensation algorithm uses state & 

measurement models of the form described in Section 2.  The algorithm is as follows: 

1. Initialize the tracker by creating a set of initial particles (guesses as 

to the location of missile).  These particles can be uniformly 

distributed, or distributed according to some a priori distribution. 

2. Take a measurement and compare the measurement to the predicted 

measurement from each particle in the set. Use the results to assign 

weights to the particles, taking into account noise in the 

measurement model. 

3. Create a new sample of particles from the existing set.  The 

particles are selected with a probability depending on their weight.  

Particles with small weights tend to be thrown away. 

4. Use the motion model to predict where the object (missile) will be 

and update the particles. 

5. Apply noise to allow for uncertainties in the state model. 

6. Estimate the state of the tracked object (missile) 
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7. Go to 2. 

The tracking performance based on factored sample can be summarized by the 

following operations on the particle set: 

),,,|( 1211 −− tt ZZZXP K ∗ )|( 1−tt XXP ),,,|( 121 −tt ZZZXP K × tt XZP |( )

),,,|( 21 tt ZZZXP K . 
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5. BALLISTIC MISSILE AND RADAR SIMULATION 

The motion model for the ballistic missile warhead and decoys is a two 

dimensional orbital and atmospheric re-entry model (without the launch phase), including 

gravitational force and aerodynamic drag forces.    Gravitational force is given by 

Newton’s gravitational law, 

 r
r

GMmF 3−= , 

where G is the universal gravitational constant, M and m are the masses of the two 

objects (in this case, the earth and the missile or decoy), and r is the vector from the first 

object to the second.  Aerodynamic drag is given by the drag equation [Ashley and 

Landahl, 1965] 

 vvACF ρ−= , 

where v is the velocity vector, A is the cross-sectional area of the object (missile or 

decoy), ρ is the density of the air, and C is the coefficient of drag.  The drag coefficient is 

the sum of two contributing terms: CP representing subsonic forces (pressure and vortex 

drag), and CW representing supersonic forces (wave drag).  (The viscosity drag, linear in 

speed, is ignored, since it is negligible.)  CP is constant, while CW varies as a function of 

speed; the model used for CW is the piecewise linear approximation 
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where v0 is the speed of sound.  The speed of sound varies with the square root of 

absolute air temperature; a smooth approximation to the ISA (international standard 

atmosphere) model is used for the temperature. 

The measurement model is based on a single radar which has range and bearing as 

well as some Doppler capability; the measurement provided by this device is of the form 

(Range, Range Rate, Bearing) 

with Gaussian errors.  The measurement device does not distinguish between the warhead 

and the decoys. 
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6. RESULTS 

In order to reduce the run time of the program, sensitivity analysis was done to 

see if some of the parameters could be modified and not significantly impact on the 

results.  Once these modifications were made, the performances of the two algorithms 

were compared by varying two parameters: the mass of decoys relative to the missile and 

process noise. 

6.1 Parameter sensitivity 

Before comparing the two methods of tracking, it was necessary to do sensitivity 

analysis on the more critical parameters.  The parameters tested were: 

- Number of particles used in the Condensation algorithm. 

- θWeight is the threshold of particle weights about an object in the Condensation 

algorithm. 

- Minimum number of consecutive points one target must have in order to be 

declared the true missile (Kalman and Condensation). 

The number of particles was varied from 100 to 6,000.  Figure 1 shows the results 

of these runs.  As the number of particles increases, the probability of successfully 

finding the missile also increases.  This is a critical parameter affecting the program’s run 

time, so using as small a number as possible was important. Based on these runs, 3,500 

particles were used for the remaining runs. 
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Figure 1 

Percent Correct vs. Number of Particles
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It was also necessary to determine the optimal θWeight before the decision is made 

that it is the missile.  Figure 2 shows this θWeight against the probability of successfully 

finding the missile.  The Condensation algorithm was insensitive to this parameter up to 

96% and dropped drastically after. With each iteration, the algorithm drops particles and 

adds particles to all potential targets, therefore, it is impossible to get all the particles on 

one target and the model will not be able to make a decision when the θWeight is too high.   

Based on these results, it was decided that 70% was a reasonable choice for θWeight. 
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Figure 2 

Percent Correct vs. Partilcle weights
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How many consecutive points (NKalman  and NCondensation, see page 21-22) must an 

object have in order to be declared the missile? Figures 3a and 3b show the result of 

varying this parameter.  In figure 3a, the Condensation algorithm got 70% to 100% 

correct regardless of the number of consecutive points, but Kalman began to drop 

significantly after 10 consecutive points. 

Figure 3a 

Percent Correct vs. Number of Consecutive Pts

0
20
40
60
80

100
120

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of consecutive Points

%
 C

or
re

ct

Kal
Cond

 



14 

In figure 3b, the time remaining (sec) represents the time remaining before the 

missile impacts the ground.  The remaining time for the Condensation algorithm stays 

relatively constant, but the Kalman filter took longer to make a decision as the number of 

consecutive points increased.  Based on these results, it was decided to use five 

consecutive points for remaining runs. 

 

Figure 3b 

Time Remaining vs. Number of Consecutive Pts
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6.2 Comparison of Kalman Filter and Condensation algorithm 

Two measurements were used to determine which algorithm was better at 

identifying the missile.  One was the percentage of correct decisions, and the other was 

the remaining time before ground impact.   

These measurements were obtained by varying the mass of the decoys and the 

process noise of both the decoys and the missile. 
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6.2.1 Mass variation 

The mass of the decoys was varied from 1% to 100% of the missile.  As the mass 

of the decoy got closer to the mass of the missile, both algorithms had more difficulty 

identifying the missile.  Since there are 5 decoys and one missile the probability of just 

randomly selecting the missile is 16.6%.  Both algorithms approached this percentage as 

the mass of the decoys approached the mass of the missile.  Figure 4a shows the 

probability of finding the missile for each algorithm as the mass of the decoy increases.   

 

Figure 4a 

Percent Correct vs. Relative Mass
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Figure 4b shows the time remaining after each algorithm makes a decision (i.e. 

the time in seconds from when the decision is made until the missile would impact the 

ground) versus the relative mass of the decoys.  Although the condensation algorithm 

consistently makes a decision within 200 to 250 seconds to impact, Figure 4a shows it 

misidentifies the missile more often as the mass of the decoys increase.  The Kalman 

algorithm takes longer to identify the missile (less time remaining) but figure 4a shows 

that it does no better at correctly identifying the missile than the Condensation algorithm. 
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Figure 4b 

Time Remaining vs. Relative Mass
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6.2.2 Process Noise 

Increasing the process noise will make it more difficult to identify the missile 

since the trajectory is more random.  Figures 5a and 5b show the results of varying this 

parameter. Figure 5a shows that the Kalman does a better job of successfully identifying 

the missile, however, figure 5b shows that it takes longer to make that decision. 

Figure 5a 

Percent Correct vs. Process Noise
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Figure 5b 

Time Remaining vs. Process Noise
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7. CONCLUSIONS 

• The Kalman percent correct decreases as the number of consecutive points 

increases because the algorithm is not able to make a decision before ground 

impact. 

• The Condensation percent correct is not sensitive to the number of consecutive 

points in the range tested. 

• As the mass of decoys approaches the mass of the missile, the performance of 

both algorithms deteriorates. 

• As the mass of decoys approaches the mass of the missile, Kalman takes longer to 

make a decision. 

• The Kalman percent correct is less sensitive to process noise. 

• Kalman is more successful in identifying the missile but takes longer to make a 

decision. 
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8. RECOMMENDATIONS 

• Recode in C++ to improve runtime performance. 

• Perform Respond Surface Analysis to obtain the optimal criteria for different 

parameters. 

• Test on a more powerful platform to improve runtime performance. 

• Consider other reentry models such as three dimensional and parabolic. 

• Do sensitivity analysis with new modifications 

• Look at the possibility of combining the two algorithms to find the optimal 

performance (combining the speed of the Condensation algorithm with the 

accuracy of the Kalman algorithm). 
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APPENDIX 

 

SOFTWARE IMPLEMENTATION 

 

The program is implemented as m-files run by MATLAB (version 6.5). These 

files are expected to run on newer versions of MATLAB.  With the addition of two 

simple functions (true.m and false.m) they also run on MATLAB 6.1. 

The design of the software is illustrated in Figure 6.  Arrows indicate direction of 

data flow (function output). 

Figure 6 

 

The data generator and both tracking algorithms can be exercised by running the 

test bed (which has two versions, one that plots the targets and tracks in real-time, and 

one that does not, for efficiency).  The test bed returns information about the decisions 

made by the two algorithms and returns the time remaining until warhead ground impact.  

The results given in Section 6 are obtained from a script which runs the test bed several 

times for each combination of parameter values. 
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The test bed initializes the targets in a linear configuration with equal spacing, and 

one of them is picked at random to be the missile warhead (the others being decoys).  At 

each time step the test-bed calls the state projection function with the true motion models 

(missile & decoy) to advance the target positions.  It also calls the measurement function 

to obtain radar measurements from the targets.  At the beginning of a scenario (with 

typical parameter settings) there are no measurements because the targets are below the 

horizon (relative to the radar).  When there are observations the test bed provides exactly 

the same radar data to both the Kalman filter track function and the condensation track 

function.  (It is important that both track functions operate on identical data, to prevent 

anomalous performance measurements due to statistical outliers.)  The track functions 

provide their track data to the test bed and to decision-making functions, which provide 

the test bed with classification results (missile, decoy, or unknown).  The test bed isolates 

the tracking and decision-making functions from the truth data (the true target locations 

and the identity of the warhead).  Both tracking algorithms use the missile’s motion 

model for all tracking. 

Other than the parameters varied as described in Section 6, the parameter values 

used in the motion and measurement simulation are the following: 

• Nominal initial position of missile and decoys: 224 km altitude 

• Initial velocity of missile and decoys: 7680 m/s tangential, zero radial 

• Mass of missile warhead: 100 kg 

• Subsonic coefficient of drag (CP): 0.1 

• Maximum supersonic coefficient of drag (CW0): 0.1 

• Cross-sectional area of missile warhead and decoys: 0.5 m2  
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• Radar location (fixed): altitude 168.19 km, 89.938 degrees ahead of 

missile initial position 

• Radar standard deviation of bearing measurement: 0.25 deg 

• Radar standard deviation of range rate measurement: 1000 m/s 

• Radar standard deviation of range measurement dependent on range: 

o Range < 1000 m : 3.16 m 

o Range between 1000 m and 10000 m : 7.07 m 

o Range > 10000 m : 30 m 

The Kalman tracker decision-making function considers the match between the 

predicted measurement for a tracker and the closest true measurement.  (If a target is 

moving according to the motion model assumed by the tracker – the missile – then the 

match will tend to be better than if the target is following a different motion model – the 

decoy.)  The tracker with the best match (determined by the density function of the 

measurement conditioned on the predicted state) on one update scores a point if the 

density function value (scaled by (2π)3/2) exceeds the threshold θDens, which has default 

value .00005m-2s-1deg-1.  When a tracker scores enough consecutive points the algorithm 

makes a decision that that tracker corresponds to the missile.  The number of consecutive 

points required is the parameter NKalman.  

The condensation algorithm decision-making function considers the total 

probabilistic weight of particles corresponding to one tracker.  (If a target is moving 

according to the motion model assumed by the tracker – the missile – then the 

corresponding particles will tend to match observations better than they would otherwise.  

Their weights will therefore tend to increase as described in Section 4.)  The tracker with 
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the greatest sum of weights on one update scores a point if the sum exceeds the threshold 

θWeight, which has default value .7.  When a tracker scores enough consecutive points the 

algorithm makes a decision that that tracker corresponds to the missile.  The number of 

consecutive points required is the parameter NCondensation. 
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